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ABSTRACT

flow do we assign nouns correctly to their underlying case roles in English, and how do we
select an appropriate verb frame to assign these nouns to? flow do we know whether a noun
phrase is a modifier of a preceding noun phrase or an argument of the verb? flow do we
select the correct meaning of each noun in the sentence, and how do we allow context to
modulate its meaning? I low do we know how to handle new nouns and verbs? In this article
we describe a simulation model that addresses these questions from a perspective quite
different from the conventional perspective found in Computational Linguistics. Words are
treated as patterns of activation, and knowledge about them is stored in distributed form. in
the connections in a large network of simple neuron-like processing units. The model exhibits
considerable facility in dealing with the problems of frame selection, role assignment, disambi-
guation, etc. and suggests a natural way to resolve unappealing aspects of the idea that there
i, a fixed set of individuated case roles. So far, our simulation model can only process one-
clause sentences. Possible extensions to multi-clause sentences are described.
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Like many natural cognitive processes, the process of sentence comprehension involves
the simultaneous consideration of a large number of different sources of information. In this
chapter, we consider one aspect of sentence comprehension: the assignment of the consti-
tuents of a sentence to the correct thematic case roles. Case role assign .ient is not, of course,
all there is to comprehension, but it reflects one important aspect of the comprehension pro-
cess, namely, the specification of who did what to whom.

Case role assignment is not at all a trivial matter either, as we can see by considering
some sentences and the case roles we assign to their constituents. We begin with several sen-
tences using the verb break:

(I) The boy broke the window.
(2) The rock broke the window.
(3) The window broke.
(4) The boy broke the window with the rock.
(5) The boy broke the window with the curtain.

We can see that the assignment of case roles here is quite complex. The first noun phrase
(NP) of the sentence can be the Agent (Sentences 1, 4, and 5), the Instrument (Sentence 2), or
the Patient (Sentence 3). The NP in the prepositional phrase (PP) could be the Instrument
(Sentence 4), or it could be a Modifier of the second NP, as it is in at least one reading of Sen-
tence 5. Another example again brings out the ambiguity of the role assignment of with-NPs:

(6) The boy ate the pasta with the sauce.
(7) The boy ate the pasta with the fork.

In (6) the with-NP clearly does not specify an Instrument, but in (7) it clearly does.

Before we go much further, it should be said that there is no universally accepted set of
case roles, nor universal agreement as to the correct assignment of constituents to roles. We
have adopted conventions close to those originally introduced by Fillmore (1968) in "The Case
for Case," but we do not think the details are of crucial importance to the behavior of our
model. Later we will suggest ways in which an extension of our model might circumvent cer-
tain of the difficulties involved in specifying the correct assignment of cases.

These complications aside, it appears from the examples that the meaning of the words
in these sentences influences the assignment o" arguments to roles. I lowecer. the placement of
NPs within the sentences is also very important. Consider these two cases:

(S) The vase broke the window.

. -, . - " - " .- . .. . .- - .. •- ,,. . . . - 2
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(9) The window broke the vase.

Here we must rely on word-order constraints. That such constraints are very strong in English
can be seen from sentences like:

(i0) The pencil kicked the cow.

Even though semantic constraints clearly would indicate that the cow is a much more likely
Agent and the pencil a much more likely Patient, Sentence 10 simply is not given this interpre-
tation by adult readers who are native speakers of English.

Word-order constraints like those illustrated by (10) are very strong in English, but it is
important to realize that such heavy reliance on such constraints is not universal. Bates and
MacWhinnev (in press; MacWhinnev, Bates, & Kliegl, 1984) have shown that adult speakers

of Italian will assign roles to sentences like (10) based predominantly on semantic constraints;
word order plays a very limited role and determines assignment only when semantics and
case-marking inflections give no information.

As the work of Bates and MacWhinney amply demonstrates, case role assignment is
influenced by at least three different kinds of factors: word order, semantic constraints, and
(when available) inflectional morphology. Reliance on any one of these constraints is a matter
of degree, and varies from language to language. In addition to these factors, there is one
more that cannot be ignored, namely, the more global context in which the sentence is
presented. Consider, for example, Sentence Ii:

(II) The boy saw the girl with the binoculars.

We get one reading if prior context tells us "A boy was looking out the window, trying to see
how much he could see with various optical instruments." We get quite a different one if it
says "Two girls were trying to identify some birds when a boy came along. One girl had a pair
of binoculars and the other did not." Cram and Steedman (198i) have experinntally demon-
strated contextual influences on parsing decisions.

While the fact that word order and semantic constraints both influence role assignment
has often been acknowledged (Bever, 1970; Fodor. Bever, & (;arrett, 1974). there are flew exist-
ing models that go very Car toward proposing a mechanism to account for these efiects. I low-
ever, there arc some researchers in language processing who have tried to find ways of bring-
tig semantic considerations into syntactic processing in one way or another. One recent
approach has been to rely on the lexicon to influence both syntactic processing and the

I. We use he phrase "semantic constraints ' to refer to the consiraints liaguagCe us.ers impose on the co occurrence
of cornstitients in particular roles in case le .el representations. In the model. as We ,hiall see. lhee corn,,r.inis ari,e

from the co occurrences of constituents in the experiences the model is exposed to.
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construction of underlying functional representations (Ford, Bresnan, & Kaplan, 1982; Kaplan
& Bresnan, 1982; MacWhinnev & Sokolov, in press). Ford et al. (1982) considered cases like
the following:

(12) The woman wanted the dress on the rack.
(13) The woman positioned the dress on the rack.

They noted that the preferred reading of the first of these had on the rack as a modifier of the
dress, while the preferred reading of the second had on the rack as a locative argument ofposi-
tioned. To account for this difference in role assignment, they proposed two principles: (a) lex-
ical preference and (b) final arguments. Basically, lexical preference establishes an expected
argument structure (e.g., Subject-Verb-Object in the case of want; Subject-Verb-Object-
Prepositional Object in the case of positioned) by consulting an ordered list of possible argu-
ment structures associated with each verb. If a constituent is encountered that could fill a slot
in the expected argument structure, the constituent is treated as an argument of the verb.'
However, if a constituent is encountered that appears to satisfy the conditions on the final
argument of the expected argument structure, its attachment is delayed to allow for the incor-
poration into the constituent of subsequent constituents. Thus, with want, the NP the dress is
a candidate for final argument and is not attached directly as a constituent of the VP; rather, a
superordinate NP structure containing the dress on the rack is ultimately attached to the VP.
With position, however, the dress would not be the final argument, and so ;s attached directly
to the VP and closed. On the rack is then available for attachment as the final argument to
the VP.

While this scheme certainly does some of the work that needs to be done in allowing the
constraints imposed by the words in a sentence to influence role assignment, we do not think
it goes nearly far enough. For as we saw in Sentences 4-7, the NPs of a sentence also
influence syntactic decisions. Oden (1978) has verified that all three NPs in sentences like
these influence subjects' role-assignment decisions.

In the literature on sentence processing, no one disputes that various factors influence
the final reading that is assigned to a sentence. I lowever, there are various views of the way
in which these factors are taken into account on-line. Kurtzman (1985 argues that the pars-
ing process is directly guided by an ongoing plausibility analysis: Marslen-Wilson and Tyler
(1981) have pioneered this sort of view, and they stress the immediacy with which syntactic.
semantic, and pragmatic considerations can all be brought to bear on the course of sentence
processing. On the other hand, Frazier and her colleagues (e.g., Frazier & Raxner, 182.
Ravner. Carlson, & Frazier, 1983) argue that the syntactic parser imposes its prefirred struc-
turing on the sentence based only on syntactic considerations, passing the results of this pro-
cessing on quickly to a thematic interpreter that can reject the syntactic parse in fthvor of a
thematically more appropriate reading.
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Whichever view one holds, it is clear that a mechanism is needed in which all the consti-
tuents of a sentence can work simultaneously to influence the assignment of roles to consti-
tuents. While we ourselves tend to favor a highly interactive view, the model we will describe
here takes as its input a partial surface parse (though it is one that leaves certain attachment
decisions unspecified) and generates from it a case-level representation. Intended extensions of
the model, which we will describe below, would incorporate feedback to the syntactic structure
level; but most of the model's behavior is not dependent on this feedback, and so readers com-
mitted to a less interactive view of the relation between syntactic and thematic analyses may
yet find the model to be of interest.

GOALS

The primary goal of our model is to provide a mechanism that can begin to account for
the joint role of word order and semantic constraints on role assignment. We wanted the
model to he able to learn to do this based on experience with sentences and their case
representations. We wanted the model to be able to generalize what it learned to new sen-
tences made up of novel combinations of words.

In addition, we had several other goals for the model:

* We wanted the model to be able to select contextually appropriate readings of ambigu-
ous words.

W We wanted the model to select the appropriate verb frame based on the pattern of
arguments and their semantic features.

* We wanted the model to fill in missing arguments in incomplete sentences with plausi-

ble default values.

* We wanted the model to be able to generalize its knowledge of correct role assignment
to sentences containing a word it has never seen before, given only a pecification of
some of the semantic properties of the word.

The model succeeded in meeting all these goals. as we shall see.

The model also exhibits an additional property that we had not actually anticipated,
even though it is a central characteristic of language understanding: he model exhibits an
uncanny tendency to shade its representation of the constituents of a sentence in ways that are
contextually appropriate. It does this without any explicit training to do so, in [act. it does
this in spite of the fact that the training inputs it receives are not contextually shaded as they
would be in reality. We will examine this aspect of the model's bchavior through examples,
and observe how it emerges naturally from the model's structure.

:7 ..... . . . . . . . . . . ..
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The model is, of course, very far from a complete or final model of sentence processing
or even case role assignment. Perhaps it is best seen as a partial instantiation of one view of
what some properties of the interface between syntactic and more conceptual levels of
language representation might be like. We offer the model not because it "solves the problem
of sentence comprehension." Rather, we offer it because it suggests new ways of thinking
about several aspects of language and language representation. The simulation model that
embodies these ideas will undoubtedly require substantial development and elaboration. It is
our belief, though, that the basic principles that it embodies will prove extremely valuable as
cognitive science continues to tv to come to grips with the problem of understanding natural
languaee.

We have limited the model in several ways. Most importantly. we have considered only
single clause sentences. We have also considered only a limited set of roles and a limited
vocabulary. Since we have restricted the analysis to E-nglish, case inflectional morphology d6es
not arise. Within these bounds, we will see that we have been able to meet the goals of the
model quite successfully, using a very simple PDP architecture.

Previous, Related Work

Both Cottrell (1985; Cottrell & Small, 1983) and Waltz and Pollack (19S5) have preceded
us in noting the appeal of connectionism as a means of exploiting the multiple constraints that
appear to influence both case role assignment and the contextual disambiguation of ambiEu-
ous noun phrases. Their models differ from ours in several ways, most notably in that both
rely primarily on local representations (one-unit-one-concept) as opposed to distributed
representations, although Waltz and Pollack (1985) do suggest ways that a distributed
representation could be used to represent global contextual influences on word meaning
disambiguation. Within the context of distributed models, ours builds on the work of J. A.
Anderson (1983) and Kawamoto (19S5): Both models show how context can be used to select
the appropriate reading of an ambiguous word. Our work incorporates mechanisms quite like
theirs to accomplish this and other goals. Finally, ilinton's (19SIa) early discussion of the use
of distributed representations to represent propositions played an important role in the
development of the ideas described here.

ARCHITECTURE OF T11E NIODEL

The role-assignment model is a distributed model, and has many properties in common
with the verb learning model described in Chapter IS. The model consists of two sets of' units:
one for representing the surface structure of the sentence and one for representing its cae
structure. The model learns through presentations of correct surface-structure case-structure
pairs; during testing, we simply present the surface-structure input and examine the output the
model generates at the case-structure level.
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Sentences. The sentences processed b- the model coit I a .erb and from one to
three NPs. There is always a Subject NP, and optionallx there ma, hc an )bject \P. If this
is present, there may also be a wit/i-NP: that is, a NP in a ,entcnc-e-inal prepositional phrase
beginning with the word wit/i. All of the numbered sentences considered in the introduction
are examples of sentence types that might be presented to the model.

Input jfOrmat of sentences. What the model actually sees as input is not the raw sen-

tence but a canonical representation of the constituent structure of the sentence, in a form
that could be produced by a simple surf-ace parser and a simple lexicon. Such a parser and
lexicon are not, in fact, parts of the model in its present form -- the sentences are simply
presented to the model in this canonical format. We discuss ways such a parser could be
implemented in a PDP model in the discussion section.

Semantic Micro features

In the canonical input format, words are represented as lists of semantic microfeatures
(Ilinton, 198 Ia; see Chapter 3; Waltz & Pollack, 1985, also make some use of a microfeature
representation). For both nouns and verbs, the features are grouped into several dimensions.
Each dimension consists of a set of mutually exclusive values, and, in general, each word is
represented by a vector in which one and only one value on each dimension is ON for the
word and all of the other values are OFF. Values that are set to be ON are represented in the
feature vectors as Is. Values that are set to be OFF are represented as dots ".").

Ve chose the dimensions and the values on each dimension to capture what we felt were
important dimensions of semantic variation in the meanings of words that had implications for
the role assignments of the words. We should be very clear about one point, though, which is
that we do not want to suggest that the full range of the phenomena that are described under
the rubric of the "meanings" of the words are captured by these semantic microfeatures.
Indeed, we do not think of words as actually having some fixed meaning at all. Exactly how
we do think of meanings will become clear after we examrine the behavior of the model, so we
postpone a fuller consideration of this issue until the discussion.

The full set of dimensions used in the feature sets are given in Table I. The noun dimen-
sions are largely self-explanator', but the different dimensions of the verbs may need some
explication. Basically, these dimensions are seen as capturing properties of the scenario
specified by the verb. Thus. the DOER dimension indicates whether there is an Acent insti-
gating the event. The CALSE dimension specifies whether the verb is causal. If not, it indi-
cates whether this is because there is no cause specified as in the case of teit wind,,w broke or
whether it is because there is no change (as in the case of th,' 1,,v t,,,hcd the girl). [ he
[01 ('1I dimension indicates whether the Aent, the Instrument. both. or neither touches the
Patient. the "AisP" alue simlply indicates that the ..\gent and the Patient are the same (as in
til cat t,vv). The N. (lIING dimension specifies the nature of the change that takes

.. . ..



M \cClelland and Kawamnoto Sentence Processing
April 30, 19S6 9

Table I

FEATLRL I)I\IL\SIO\S ANl %,\ILIFS

Nouns

HULMAN human nonhuman

SOFTNFSS soft hard

GE\DFR male female neuter

VOLUMEF small medium large

FORM compact 1-I) 2-1) 3-D

POIN\TINESS pointed rounded

B REA KA B ILITy fragile unbreakable

OBI-TYPE food toy tool utensil furniture
animate nat-inan

Verbs

DOER yes no

CAUS E yes no-cause no-change

TOLCII agent inst h'th none Aisll

NATClING pieces shreds chemical none
unused

ACT _\lI I trans part none VA

FT\I~ trans part none \A

iII FS I Y low high

Note: nat-mnan natural inamimate. AisPl =\Agent is lliticnt.
NA =not applicable.

place inthe Patient. TeAG IMVMI and PTr_ M M pct h oeeto h c
and the Patient, respectively, and INAT'NSITY simply indicates the f-orcef-Ulness of' the action.
The labels given to the dimensions are, of course. only for reftircncc; they, were chosen so that
each noun or verb dimension would ha\ e a unique first letter that could be us.'d to dcsignlate
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the dimension.

It must be stressed that we are not strongly wedded to this particular choice of' Features.
and that other f'eatures would need to be included to extend the model to larger sets of' nouns
and verbs. On the other hand, the features that we did include were caref-ullyv chosen because
they seemed highly relevant to determining the case role assignments. For example, the DOER

*dimension directly specifies whether there is or is not an Ag-ent. Thus, the features of the verb,
in particular. often have direct case-structural implications. (We would pref'er a model that
constructed its own semantic microf-eitures using back propagation [Chapter S1 or a related

* method for learningz, but this extension has not yet been implemented.)

Figures I and 2 give the vectors that we assigned to each of-the words used in the model.
It will be immediateli, noted that some of- our encoding- decisions were arbitrar-x, and that
sometimes we seem to be f-orcing- words into molds that they do not perf'ectly fit. Further.

HU SO GNO VOL FORM PO SR CBJ 7vP
ball1 1 1 1
float 1 1 1 11 1 1
bb-bat

bat 1 9 ~ 1

paperwt

chleese 1 1 111

c-chicken 1 1

curtain 1 1 1
Cesk1 1 1 1

ilatchet I 1

hlammrer 1 1 1 1 1
man 1 1 1 1

Piate1 1 11
rock 1

casta 11

sCooriI
carrot 1 I

vase I.*'

slee1

I ivure I [he 1 101111' Us ed In the m110dei arnd their if.riures 1:,r irnf,vuu Iteul 0FI~ljtUernL,. the -&rret. luil%

PC, tfied reidn is used in pecifinv Ahjt the case role repre~erl.tit oi the -rl',tuerT1 'hoid ice. hij ltic

Lurderspeihlid. irnhiviuous forms %%ere Lied in the entenice les cl Inpu1t repreNelia~tioi See luxt t r i!ill li-tii ii
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each feature has the same weight as all the others, and is as definite as all the others. Reality'
is not nearly so definite or evenhanded, of course. Balls are round, but may be soft or hard:
paperweights are generally compact in shape but need not be, etc. The definiteness of the
input used in the simulations is a simplification that we have adopted to make the initial cod-
ing of the input patterns as straightforward as possible. A more realistic coding would allow
some features to be more definite than others. We will see that the model tends to correct
this deficiency on its own accord.

One of our goals for the model is to show how it can select the contextually appropriate
meaning for an ambiguous word. For ambiguous words (bat, flying or baseball, and chicken,
living or cooked, the input pattern is the average of the feature patterns of each of' the two
readings of the word. This means that in cases where the two agree on the value of a particu-
lar input dimension, that dimension has the agreed value in the input representation. In cases
where the two disagree, the feature has a value of .5 (represented by "'.") in the input
representation. .\ goal of the simulations is to see if the model can correctly fill in these

DO CAU TOUCH NCHG AMV PMV IN
ate 1 1 1 1 1 1 1

ateAVP 1 1 1 1 1 1 1
ateAVPI 1 1 .1 1 1 1 1
ateAVF 1 1 1 1 1 1 1

t3roke 1 1 1 1 1 1 1

brokeAVPI 1 1 1 1 1 1
brokeAVP 1 1 1 1 1 1 1

brokeiVP I 1 1 1 1 1

brokePV 1 1 1 1 1 1

, VP 1 1 1 i 1 1
hIAVPI 1 1 1
hStAVP 11 i I 1

hliVP 1 1 1 1 1 1 1

moved 1 1 1 1 1 1
movedAVP I ' 1 1 1 1
movedAVS I I 1 1 1 1
moveaPV 1 1 1 1

touched 1 1 1 1 1
loucriedAVP 1 1 1 1 1 i

ioucredAVP 1 1 1 1 1 1
toucmeolVP 1 1 i 1 1

Figure 2. The verbs used in the model and their microfeature representatons. the lorms blloked h% ,trinv'
of uppercase letters (e.g., .\VPI) represent the alternative feature patterns that the model must choose hercen as its
way of specifying the contextually appropriate reading of the verb. These alternative feature patterns correspnd to

the semantic features of the verb appropriate for particular conligurations of case roles, as indicated h% the upper
case letters: A = \gent, V = Verb, P = Patient. I = Instrument. \1 = \lodifier. S = Self. : = implied I o,,d
The position of the letter indicates the position of the corresponding constituent in the Input sentence. I he pattern,
given with the generic verb unadorned b% uppercase letters were used in the sentence [c'el. input represettatns-"

;i .- ' -?:- ":". .:. " . • .': . .. ... ". . ".. .. . . . ... .. . .
• . """ ,, " '% Z,-, ' " " °-- . ,: ' "' """'" '-: : -' " " """"" """ " ,. - . '= " " ' " " " "" " '"' " ' 

" "
"1"""" "'."" '"" ' .

'
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unspecified values, effectively retrieving the contextually appropriate missing values in the pro-
cess of assigning the word to the appropriate case role. Figure I indicates both "full" readings
of bat and chicken, as well as the ambiguous forms used as inputs. 2

Another goal for the model is to show how it can select the contextually appropriate
reading of a verb. This is handled in much the same way as noun ambiguity resolution. The
different readings are represented by (potentially) different sets of semantic microfeaturcs; for
example, the AgentNo-Instrument reading of broke (brokeAVP) involves contact between the
Agent and the Patient, while the instrument, No-Agent version (brokeiVP) and the
Agent 'Instrument version (brokeAVPl) involve contact between the Instrument and the
Patient. The input representation of the features of a given verb is the same, regardless of
context, and the task given to the model is to activate the set of features for the sentence-
appropriate version. Rather than use the average pattern based on all of the different possible
readings of the verb, we used a "generic" pattern for each verb, which is the pattern for what
we took to be the verb's most typical case frame. This is indicated in Figure 2 by the pattern
of features next to the plain ver

The feature patterns corresponding to the different case frames the model must choose
among are indicated on the lines in the table following its generic pattern. (The labels on
these lines are used simply to designate the feature patterns. They indicate the roles the vari-
ous arguments in the surface structure of the sentence play. Thus, brokeAVPl specifies the
case frame in which the surface subject is the Agent, the surface object is the Patient, and the
with-NP is the Instrument.) Note that the microfeatures of two different readings of the same
verb may or may not differ, depending on whether the features of the scenario do or do not
change in different case frames.

The feature vectors for the constituents of the sentence The boy broke the window with
the hammer are shown just below the corresponding constituents at the top of Figure 3. Note
that these are displayed in the order: Verb, Subject NP, Object NP, and With-NP. The row
of letters below the feature vectors indicates the first letter of the name of the dimension on

2. For the concept food, which is taken to be the implied Patient in sentences like The boy ate, no particular shape
seems appropriate. Therefore the intended output representation is assumed to be unspecified (as indicated by the
"?") for all values on the shape dimension. For all other dimensions, food has what we take to be the typical values
for foods.

3. The different handling of nouns and verbs is not a principled distinction, hut an exploration of two endpoints on
a continuum ranging from underspecification of the input for ambiguous words to complete specification of an input
representation, regardless of the fact that the features used in the case role representation will differ as a function of
context. Perhaps the idea that the features will be altered as a function of context is the best way of putting things in
this case. We imagine that the true state of affairs is intermediate between these two extremes, for both nouns and
verbs. In any case, the model does not have any prior commitment to the idea that the features in the input
representation should be preserved in the output representation; the full prespecification simply gi~es the model a
fuller description to work from, thereby allowing greater differentiation of the different verbs.

-A
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Figure 3. Thep to his figure displays the consultuents of the sentence The boy broke :he window wi

;he harmmer in the order: Verb, Subject N P. Object N P. and With -N P. Below these are the microfeatures of each '

constituent, and below these are conjunctive sentence -structure units for each constituent. Below the horizontal line

are the blocks of case-structure units for the ,izent. PaLitent. Instrument. and Mlodifier roles. Below these an indi-

cation of the pattern of noun features he model is act'latung for each slot (represented by, the vertical black hars),

followed by a representation of the microfeatures of the correct tiller of" each Slot. [The last line gives the lahel of" the

correct head (verb frame or modified \11) and tail isot filler) for each slot. See text for f'urther explanation.

which each t'eature represents a value. For example. the first two elements of' the verb 1'eaturc
,ector are labeled d for the DOER dimension; the first two aluPS Of' each of' the three noUn

feature vectors are labeled it for the I ILL.\ dimension.

Se'ntence-s trzj(,ture ulits. The senten.e -,st ruct tre level r-cpresentattion of' an input ,cn-i

- f~enice is not actually, the set of'constitucrit feature ectors,. ratther, it is the pattern )C',cti\ation ".
".. these ectors produce over unts that correspond to par ot' features. Fhese units ,ire called.''

* 14404"44'' 0 10-",,,0''4 O l

I 0 0 , 0. *1400t14'l'1
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sentence-structure (SS) units."

Each SS unit represents the conjunction of two microfeatures of the filler of a particular
surface role. Since there are four sentence-structure roles, there are four sets of SS units.
Within each set there is a unit that stands for the conjunction of every microfeature value on
each dimension with every microfeature value on every other dimension. For example, for
nouns there are units for:

Il1:MAN = yes 'GENDER = male

SOLIDI'TY = hard BREAKABILITY = fragile

among many others; for the verb, one of the units corresponds to

DOER = yes , TOUCH = instrument

(i.e., there is a doer -- the Instrument touches the Patient).

The sentence-structure units are displayed in Figure 3 in four roughly triangular arrays.
The verb array is separated from the arrays for the three NPs to indicate that different features
are conjoined in the verb and NP representations.

Each array contains the conjunctive units for the constituent immediately above it. There
is a unit wherever there is a 1, a "?" or a .... Within each array, the units are laid out in
such a way that the column a unit is in indicates one of the microfeatures that it stands for,
and the row it is in indicates the other microfecature. Rows and columns are both ordered in
the same wav as the microfeature vectors at the top of the figure. The dimensions are indi-
cated by the row of letters across the top of each array and along the left (for the verb units)
or right (for the three sets of NP units). Note that the set of units in each array fills less than
half of each block for two reasons. First, there are only In (n - 1)1 2 distinct pairs of n
features; second, pairs of values on the same dimension are not included.

We considered various schemes for activating the sentence-structure units. One possible
scheme would be to use a strict deterministic activation rule, so that a particular SS unit
would be turned on only if both of the features the unit stands for were on in the feature vec-
tor. This use of the SS units would allow the model to learn to respond in a finely tuned way
to particular conjunctions of microfleatures. I lowever, we wished to see how well the model
could function using an inherently noisy input representation. Furthermore, as discussed in

4. An alternative name for these units would be "surface-structure'" units. io indicate that the', do not capture the
notion of underlying subject, object, etc. Htowever, we have chosen the term "sentence-structure because, fi)r
present purposes, the intormation they capture is not even a full surface -structure parse of the sentence: in particular.
it does not specifN the attachment of the with-N P.

. . -. . S
. ,- .- •-.. " " " 3-. 3, 3 :"-.: -
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Chapter 18, we knew that generalization is facilitated when units that only partially match the
input have some chance of being activated. In the present case, we considered it important to
be able to generalize to words with similar meanings. Therefore, the SS units were treated as
stochastic binary units, like the units used in Chapter 18. Each SS unit received excitatorx
input from each of the two features that it stands for, and we set the bias and variance of the
units so that when both of a SS unit's features were active, the unit came on with probability
.85; and when neither was active, it came on with probability .15. These cases are represented
in the figure by "I1" and .. respectively. Units receiving one excitatory input came on with
probability .5; these units are represented in Figure 3 by "?".

The use of the SS units in conjunction with these particular activation assumptions
means that the input representation the model must use as the basis for assigning words to
case roles is both noisy and redundant. Each feature of the input is represented in the activa-
tion of many, of the SS units, and no one of these is crucial to the representation. A drawback
of these particular activation assumptions, however, is that they do not allow the model to
learn to respond to specific conjunctions of inputs. While the model does well in our present
simulations, we presume that simulations using a larger lexicon would require greater
differentiation of some of the noun and verb representations. To handle such cases, we believe
it would be necessary to allow tuning of the input connections to the SS units via back propa-
gation (Chapter 8) so that greater differentiation can be obtained when necessary. In princi-
pie, also, higher-order conjunctions of microfeatures might sometimes be required. Our use of
broadly tuned, pair-wise conjunctive units illustrates the style of representation that we think is
appropriate for the input, but the present version is only an approximation to what we would
expect a model with a tunable input representation to build for itself.

Case role representation. The case role representation takes a slightly different form
than the sentence-structure representation. To understand this representation, it is useful to
drop back to a more abstract viewpoint, and consider more generally how we might represent
a structural description in a distributed representation. In general, a structural description can
be represented by a set of triples of the form (A R B) where A and B correspond to nodes in
the structural description, and R stands for the relation between the nodes. For example, a
class-inclusion hierarchy can be represented by triples of the form (X IS-..\ Y), where X and Y
are category names. Any other structural description, be it a syntactic constituent structure, a
semantic constituent structure, or anything else, can be represented in just this waV.
Specifically, the case role assignment of the constituents of the sentence The hYv broke the win-
dow with the hammer can be represented as:

Broke Agent Boy
Broke Patient Window
Broke Instrument I lammcr

The constituent structure of a sentence such as The h,4) ate the ,asta with the sauce would be
represented by:

Z. 
.. . **
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.Ate Agent Boy
Ate Patient Pasta
Pasta Modifier Sauce

In a localist representation, we might represent each of these triples by a single unit.
Each such unit would then represent the conjunction of a particular head or left-hand side of a
triple, a particular relation, and a particular tail or right-hand side. Our more distributed
approach is to allocate groups of units to stand For each of the possible relations (or roles),
namely, .\gent, Patient, Instrument, and Modifier, and to have units within each group stand
tbr conjunctions of microfeatures of the first and third arguments (the head and the tail) of the

triple. Thus, the triple is represented not by a single active unit, but by a pattern of activation
over a set of units.

In our implementation, there is a group of units for each of the four relations allowed in
the case structure. In Figure 3, the Agent, Patient, ln!strument, and Modifier groups are laid
out from left to right. Within each group, i ndividual units stand for conjunctions of one
microfeature of the head of each relation with a microfeature of the tail of each relation.
Thus, for example, Broke-Agent-Boy is represented by a pattern of activation over the left-
most square block of units. The unit in the ith row and jth column stands for the conjunction
of feature i of the verb with feature j of the noun. Thus all the units with the same verb
feature are lined up together on the same row, while all the units with the same noun feature
are lined up together in the same column. For the Modifier group, the unit in the ith row and
jth column stands for the conjunction of feature i of the modified \P and feature j of the
modifier NP. Letters indicating the dimension specifications of the units are provided along
the side and bottom edges.

The figure indicates the net input to each case role unit produced at the end of the train-
ing described below, in response to the sentence The boy broke the window with thc hammer.
(We will see very shortly how these net inputs are produced.) As before, a I indicates that the
net input would tend to turn the unit on with probability (p) greater than or equal to .85, and
a "." indicates that the net input would tend to turn it on with probability of .15 ur less. A

+ " indicates that the net input has a tendency to turn the unit on (.85 > p > .5), and a
indicates that the net input has a tendency to turn the unit off(.5 > p > .15).

[he correct case-frame interpretation of the sentence is provided to the model by a
specification that lists, for each of the four possible case roles, the label corresponding to the
head and tail of the role. These are shown below each of the four blocks of case role units.
The "'" is used to indicate a null slot filler, as in the Modifier role in the present example.
From this it is possible to compute which units should be on in the case role representation.
I Iere we simply assume that all the correct conjunctions should be turned on and all other
units should be off.

r!..
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In this example, the pattern of net inputs to the case role units corresponds quite closely
to the correct case role representation of the sentence. The features of boy may be seen in the
columns of the block of Agent units; the features of window in the columns of the block of'
Patient units: and the features of hammer in the columns of the block of Instrument units.
The features of the Agent-Verb-Patient reading of the verb broke can be seen in the rows of
each of these three sets of units. There are no features active in the fourth set of units, the
Modifier units, because there is no Modifier in this case. In both the Agent and the Patient
slots, the model tends to turn on (p - 51 all the units that should be on, and tends to turn off
(p < .5) all tile units that should be ofl. In the Instrument slot, there are some discrepancies;
these are indicated by blackening the background for the off'ending units. All of the discrepan-
cies are relatively mild in that the unit has either a weak tendency to go on when it should not
+ on a black background) or to go off when it should be on ( - on a black background).

Several things should be said about the case-frame representations. The first thing is
that the slots should not he seen as containing lexical items. Rather, they should be seen as
containing patterns that specif' some of the semantic properties assigned by the model to the
entities designated by the words in tile sentences. Thus, the pattern of feature values for the
verb break specifies that in this instance there is contact between the Instrument and the
Patient. This would also be the case in a sentence like The hatnmer broke the window. I low-
ever, in a sentence like The boy broke the window, with no Instrument specified, the pattern of'

feature values specifies contact between the :\gent and the Patient. Thus. the verb features
provide a partial description of the scenario described by the sentence. The noun features.
likewise, provide a partial description of tile players (to use Fillmore's analogy) in the scenario.
and these descriptions, as we will see later on. may actually be modulated by the model to take
on attributes appropriate for the scenario in question.

Details of Sentence Processing and Learning

The model is very much like the verb learning model (Chapter IS). When a sentence is
presented, a conventional computer program front-end determines the net input to each of the
sentence-structure units, based on tile feature vectors of the words. Each of these units is then
turned on probabilistically, as described above. Each surfhce-structure unit has a modifiable
connection to each of the case-structure units. In addition, each case-structure unit has a
modifiable bias (equivalent to a connection from a special unit that is always on. lBased on
the sentence-structure pattern and the current values of the weights, a net input to each case-
structure unit is computed. this is just the sum of the weights ofthe active inputs to each unit

plus the bias term. Case-structure units take on activation values of'0 and I. and activation is
a probabilistic function of the net input, as in the verb learning model.

During learning, the resulting activation of each case-structure unit is compared to the
value it should have in the correct reading of the sentence. The correct readiw,,g is supplied as
a teaching input" specifying which of the case role units should be on. The idea is that this

.o , - .. *. -.- . _ _. -L ' -. - . . .. . .. . . . . .. " '* " "- "' " " ". "" "" "* , " .. . -. .
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Fable 2

(ENF:.RA fURS I-OR SIII\\ CIS LSIlD IN IRPA I\ I\G AMI) 'I'STIS

Sentence Frame Argument Assignment

The human ate. A VF

The human ate the food. AV p

I he human ate the food with the food. Vi

The human ate thc food with the utensil. .A V 1)

-The animal ate. A V F

I he predator ate the prey. A V P

The human broke the fragile object. AV P

The human broke the fragile object w.ith the br~aker. AV1PI

The breaker broke the fragile object. IVP

The animal broke the fragile object. V

The fragile object broke PV

[he human hit the thing. AV 1

[he humnan hit the human with the possession. AV1P\I

The human hit the thing wit-h the hitter. XX P1

[he hitter hit the thing. lVI r

Tehuman moved. A\ VS

TFhe human moved the object. ,XVP

The animal moved. ,XVS

T-he object moved. pIV'

Note: Argument assigniments speLify the case role assignment of the constituents of'
a sentence from left to right. A = Agent, V = Verb. P Patienit. I Instrument.
\1 Mlodifier, F~ (implied) Food. S Self.

teachiniz in put is analogOUS to the representation a real languiage learner would construct of'
the situation in which the sentence mighlt have ocurd1varigsml amnounts to adjut
ing connection strengths to make the Output generated by the model correspond more closely
to the teaching Input. A\S in the verb learning- miodel, if' a unit should be active and it is not.

the weiehts on all the active Input lines are incremnented and the threshold is decremented. If Ia
Unit should not be active but it is, the weiehts on all the active output lines are decreniented

and the threshold iicremnrted. hIs IS, Of' Course, just the perceptron conmeroence pro-
Ceduire (Rosenblatt, 1962), whose strengths and weaknesses has e been einmined and relied
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upon throughout the book.

SIM'IULATION EXPERIMENTS

The most important thing about the model is the fact that its response to new inputs is
strictly dependent upon its experience. In evaluating its behavior, then, it is important to have
a clear understanding of what it has been exposed to during learning. We have done a
number of different experiments with the model, but we will focus primarily on one main
experiment.

[he main experiment consisted of generating a corpus of sentences derived from the sen-
tence frames listed in Table 2. It must be emphasized that these sentence frames were simply
used to generate a set of legal sentences. Each frame specifies a verb, a set of roles, and a list
of possible fillers of each role. Thus, the sentence frame The human broke the frwgil eobject
with the breaker is simply a generator for all the sentences in which human is replaced with one
of the words on the list of humans in Table 3, fragile object is replaced with one of the words

on the list of fragile objects in Fable 3, and breaker is replaced with one of the words on the
list of breakers in the table. It is clear that these generators do not capture all of' the subtle
distributional properties of referents in real scenarios (e.g., the model is completely sex and age
neutral when it comes to hitting and breaking things, contrary to reality), and so we cannot
expect the model to capture all these subtleties. However, there are certain distributional facts
implicit in the full ensemble of sentences encompassed by the generators. For example. all the
breakers but one are hard, not soft (only ball is coded as soft in the feature patterns): only the
humans enter as \Rents into scenarios involving Instrument use- etc.

The "target" case-frame representations of the sentences were generated along with the
sentences themselves. The case role assignments are indicated in Table 2 by the sequence of
capital letters. These indicate the assignment of arguments from the sentences to the roles of
.\gent, Verb, Patient. Instrument. and Modifier (of the Patient). 5 Note that there are some
sentences that could be generated by more than one generator. Thus, The boy hit the girl with
the ball can be generated by the generator The human hit the human with the possessi,,n, in
which case the ball is treated as a Modifier of the Patient. Alternatively, it may be generated
by the generator The human hit the thing with the hitter. In this case, the ball is treated as the
Instrument. Similarly, The bat broke the vase can be generated by l'he breaker broke the
fragile_ob ject, in which case its case-frame representation contains a baseball bat serving as
Instrument. The same sentence can also be generated b liT animal broke thfiraile object,

5. Iwo special cases should be noted: For Th,' human ae. the case frame contains a specification tF) that desig-
nates an implied Patient that is the generic food with unspecified shape. as indicated in the feature patterns displayed
in Figure I. I-or the human moved and l-he animal mm,',t. the case fraime contains a specification (S) that indicates
that there is an implied Patient who is the same as the \gent (note that the sense of the %erb move used here in-
volves moving oneself and not one's possessions).
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in which case, of course, its case-frame representation contains a Oving bat serving as Agent.

For the main experiment, we generated all the sentences covered by the generators and
then selected eight of each type to use as training sentences. Of these we selected two to be
familiar test sentences. In addition, we selected two additional sentences from each generator
to be used as novel test sentences. These sentences were never used to train the model.,)

The model was given 50 cycles of training with the set of training sentences. On each
cycle, each sentence was presented, the model's response to it was generated, and connection
strengths were adjusted according to the perceptron convergence procedure.

Table 3

NOt1 N CA II(G(RII:S

human man woman boy girl

animal fl-hat li-chicken dog wolf sheep lion

obiect hall hh-hat paperwt cheese co chicken curtain
desk doll fork hatchet hammer plate rock
pasta spoon carrot vase window

thing human animal object

predator wolf lion

prev li chicken sheep

( od co-chicken cheese spaghetti carrot

uterisil fork spoon

Irigile ohle,.t plate window vase

hitter hall bh hat paperwil hatchet hammer rock vase

breaker paperwt Ill hh bat hatiLlet himiner rock

possession hall dog hh b.t doll hattlet hanimmer v.ie

6 Some of tie generators (t'g , I 1 h ,,ntan ig .,:,-, h; ' .tulh the itf,,r eer ite.1 rithcr lir m ei ioiihers 1l" ditfereti
sentences (ill this case, 5(i/. but others re . 1'. /,- /t:1,rri ,;,,. lh, pr,' wr it, pot , enerate oril%, 'ery ,nill
nunhers of sentences t")ur in e.ith of these aaes siI lie triiiig materials contained four copies of each of to Of
these sentences so Liit exti here, there Atere t%,s , lmili.lr itst eitenLes ,ltl m id 1%%o inlA. lir test seotelth es,

" "• . " " " " " ' " ' '. -' " - . - - • . " - - ". - , " - -
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After the 5th. 10th. 20th, 30th, 40th, and 50th training cycles, the model was tested on
both the farmiliar and the novel test sentences. No learning occurred during the tests, so that
the response to the novel test sentences always represented generalization from the training
materials rather than the effects of direct experience.

Basic Results

Figure 4 gives a very global indication of the model's performance on both the Camiliar
and the novel test sentences at each phase of testing. The figure indicates the average number
of' incorrect microfieatures produced by the model as £function of learning trials, for both the
familiar and unfamiliar test sentences. There are a total of- 2500 case role units, so on the
average the model is getting over 9500 correct, even with unfamiliar sentences, after the first 5
learning cycles, and is down to about Po error at Cycle 50. Htowever, these statistics are
somewhat misleading, since on the whole, most of the case role units should be off'. :\ more
realistic indication of' the absolute performance level is provided by the observation that
between 56 and 168 of the units should be on in the correct case role representation of' each
sentence. In general, the errors that the model does make are about evenly distributed
between sins of commission (false alarms) and sins of omission (incorrect rejections). Thus.
on average. at the end of 50 cycles, the model is turning on about S5 of' the approximately 1)
microteatures that should be on, and is turning on about 15 out of 2400 microf-eatures that
should be off. This corresponds to a d of about 3.5.

-~100

L_ novel sentences

O 60

S 40
familiar sentences

20

0 10 20 30 40 5o

Learning Cycle

Sfigure 4 \%erave number of incorrect microleaitures produced as a function fl am. ourit )I- learning exp'rTcIq, C
oin number *,:%cles throueh the full list of training sentences).

o4
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Two things are apparent in the graph. First, there is a smooth and continuing irpro'.e-
ment in performance for both farruliar and unarujiar sentences. Second. there is an advan-
tage for sentences that the model has actually seen before, but it is not particularly great. As
we shall see, there is considerable variability in the model's ability to deal with particular ;en-
tences: only a part of it is accounted for by whether a particular sentence happens to be old or
new.

Figures 5 and o indicate the model's performance on each of the 3S anuliar and unfami-
liar test sentences, at each of the six tests.

'CMI. '1.6 SETENCES

ino, t 5ame 9 '00 2 0 42 50

OI' ati .PF '2 38 23 20 2 '
2' ate AvF 54 36 23 3 4

-omen~~ at ce i. g 49 32 26 1 2 2
-omen ate lOta AP 62 33 . '4
.men ate co C"C Delta &APM 30 66 49 17 36 29
O," .t* o.ite Co -,C 4oPM 78 47 31 2' , 5 I9
, aP-to SOOO' AVPI 7' 63 5 25 4 3
bO, ate O fork AVP 7j 47 45 23 26 a
dog ate aVP 58 27 3 22 25
Seep eta avF 75 44 25 4 9 9

on ate i c"'r avp 60 48 3' .9
,o' Cto n.eeo .v 92 14

.,an bo..o AIoD Co 5 38 3 2
b., boke pate 9 96 S6
-an broke o. 0o O Oat 4,2 4A 6 '' oS 9 m 43 S
P-i brok Op t l aeta,02 - 7' 0 I' 39 11 4
oaoer.?t roke .ese 4" ! 4, , 5
th Deit broka Dlate P-0 19 4 403 4

* met bok.e . -no. ..P, '

f. 3 br0oe plate.0. 44 2'

.4lo broPe , "' 3 1

- .n ~ Pilbok .. Z5
,,n m t Delta ~ 4 "0 • "k 4 4' i] 3

hi , t o , 0 29 31

-oa meer *C II
I nit s o h a r 4,p2 - ' 46. -4 13

hat.met nit past. 7,0 ,) .- 4 4. 4 .0

oplen mored 0.7 4 '9 7J 4 .4 7
.olmn movo plate 0.0 '3 r m 43 K r ,

4'' ml Oe et 440S mm )9 4" ., .

bet mood 0,5 22 ) 24 3 ;
do mOo 0. 4' mt 4a4 4s Z4

30105 medm .' . 4 46 4 44 4]

-i'ure 5 \umher of mlcrolicature errors for each Iann iar seitence, flier 5. 1. 20. 3(1. 41. ind SI) e.,"

ilrough the ,et ir tr tnv stimuli. Sentences are Aritten in S\'O\ AV = soth \P) arder to t;Icilitate readin. Ihei

Column laheled "Verb Frame ' indicates the role assignments t, these areilrnents I lie indic.ies a entence thai -,

amhvu.us in terms of the set of generators .sed, in that it .iould has e been ,-eneraied it! 159, dilereni Aj., Re,.uIl

L hat arnhijuous 56, ords (Ial. ,hike'n ire a.nhiuoul 'peo.LIeh d itn the riput. it i. the ih i( the flo.del to vledt the

coniextuall, approprnate reading.
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In what follows, we will f'ocus attention on the performance of the model at the end of-
50 learning cycles.

Le of Semantic and [Ford-Order Cues -.

Vo assess the model's ability to make use of word-order and semantic cues to role assign-
ment. we examined its performance on the verbs hit and break. In the case of' break. con-
straints are very important: in the case of hit, role assignment is sometimes determined by
word order alone.

The dog broke the plate, the hammer broke the vase, and tie window hro)ke. l-he
verb break can take its Instrument, its Agent. or even its Patient as its Subject. In the first
two cases (as in The dog broke the plate and [he hammer broke the vasel, it is only the seman-
tic properties of the subject that can tell us whether it is .\gcent or Instrument.

I9 M2 - W 2 E NTEN(

00y St.~A 26 34 3
oa " li A- . 4' 26 3 9 _ 8...'.' . cc crc44 . .... .4 .4 ' +9 3

'"4 it CO Ch'I!C 1.0 49• ,I 34, 29 -

.,c,",fl it. o Chic ,5r-ot 4.P 2 99 5' '0 42. . 05,: ct . 5t .. .. .... o 96 93 49 .j4 5
"a ot C r 1,' .t .03 4, 6 66 39 43 2

-h. ato Aa~o 'o- P '79 68 44 J0 32
1 1it it.3 39 45 4'

m 2h.C at. IS 4 57 1 47) 1 .

at. trin14 5 44 14 .
. .. ...atQ .. P 4 32+ 2 ' 4 .9'

*~~~1 fli or. . 33 -9 3

7.- DrOPS pa., 1.4 fi 52 35 .9
4''~l+ pro.. 0 ati 4.0 ,+ 2 2' fl 4

-4' o'-o.* *as 4 '4 1.4 8' ) .0 '4l ,0,.7

... ..... - 73 34 .. . . -
t. 4 3

.,, o 4o 10 4 '2 ' 44 4 ,-

'4 ' '''. &'" 2
DC+ '. -'t *0'. ' .'. - - . .
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These two sentences happened to be among the unfamriliar test sentences generated by
the generators The animal broke the !ragile_obiect and The breaker broke the Jragile_,,bieci.
The patterns of activity produced by the model in response to each of these two sentences are
shown in Figures 7 and S. We can see that in the case of The dog broke the plate, there is a
strong pattern of' activation oer the Agent units, while in the case of The hammer broke the
;ase, there is a strong pattern of activation over the Instrument units. In fact. the pattern of
acri',ation over the Agent units in the first case corresponds closely to the expected target pat-
tern for brokeAVP-agent-dog, and the pattern of activation over the Patient units in the
second case corresponds closely to the expected target pattern for brokelVP-instrument-
hammer. Thus, the model has correctly assigned the word dog to be ..\gent in the first case.

2-

* .... . ...
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I he other. %ere [he bat ,ro.,, :e ," ind ';?e :Ih , - ,. I . 0 ld thce eraetice, 'kdll he dt-li,-cd

later
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and the word hammer to be instrument in the second. A summar displa% that makes the
same point is shown below the case role representations in Figures and S, and is repeated.
for these and other sentences, in Figure 9.

The summary display indicates in histogram form the features of the nght-hand side of'
the triple stored in the corresponding block of units. The summary pattern for the Agent role
in the sentence The dog broke the plale is shown below the block ofAgent units in Figure -

The pattern just below this indicates the "correct" pattern: in this instance, this pattern is just
the feature pattern for dog. In this case we can see that the pattern the model produced is
verv close to the correct answer.,

I
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This example has been described in some detail, in part to explicate our displays of the
model's responses to particular sentences. In the process we have seen clearly that dog and
hammer trigger the appropriate bindings of arguments to slots. This is also the case for exam-
ples of the form The plate broke. There, Figure 9 indicates that the only slot in which there is
appreciable activity is the Patient slot.

These examples illustrate that the model has learned quite a bit about assigning fillers to
slots on the basis of the microfeatures of the slot fillers involved. For the word break, animate
surf'ace subjects are treated as Agents and inanimate surface subjects are treated as Instru-
ments if an Object is specified; if not, the inanimate surface subject is treated as Patient. The
model seems to capture this fact pretty well in its behavior °

The boy hit the girl and the girl hit the boy. For the verb hit, there is a possibility"
that a sentence describing an instance of hitting will have two animate arguments, which may
be equally plausible candidates to serve as Agent. The only way to tell which is the Agent (in
the absence of other context) is to rely on word-order information. We know that boy is the
Agent in the The boy hit the girl only because it occurs in the preverbal position. The model
has no difficulty coping with this fact. Figure 10 shows in summary form the features
activated by the sentences The girl hit the boy (a sentence the model actually experienced dur-
ing learning) and The boy hit the girl (a sentence not experienced during learning). In both
cases, the model activates the feature pattern for the correct argument in the correct slot. This
is so, even though the feature patterns for boy and girl differ by a single feature.' As a more
formal test of the model's ability to assign slot fillers to slots based only on sentence-structure
information, we tested the model on the full set of 12 different human-hit-human sentences. In
all cases, the preverbal argument more closely matched the pattern of activation in the .\gent

ical except for this feature, the representation is really describing a somewhat pointy hammer (or perhaps blunt
hatchet).

10. One thing that we see illustrated here is that %ith certain novel sentences, the model may have a tendency to

misgenerate some of their features when assigning them to underlying slots. Thus, for example. in the case of lhe
plate broke, only some of the features are produced faithfully. These are, in fact. the features associated with the
slot fillers that the model actually learned to deal with in this sentence frame (vawe, window). [he ones that are
poorly reproduced are the features that the familiar exemplars differ on or which differ hetween the familiar exam-
pies and plate. Such ecrors would he greatiy reduced if a more disparate range of Patient intransitive verbs with a
more disparate range of subjects had been used in the learning. Such errors could also be cleaned up quite a bit by
an auto-associative network of connections among the case role units. l'he virtues of autmciting the model %sith
such a network are considered in more detail later.

11. Though the model did not actually learn the sentence The boy hit the irl or ,itn other sentence containing !',).
and girl as Subject and Object. it did learn se~eral sentences in %bikh i by .as the suhect of hit hand ,e eral others
in which ,girl was the object. As it happened. ,eceral of these inolved modifiers of zirl. hence the rather dilflue pat
tern of activation over the Modifier units.

-.- -
-~ 2.. ~.. - !
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Figure 10. Summaries of ofl the role assignment patterns produced b. 7he girl hit -he boy and The 1,oY ha the
,ri

role, and the postverbal argument more closely matched the pattern in the Patient role.

VIerh-Frame Selection

Part of the task of the model is to put slot fillers in the correct places, but there is more
that it must do than this. It must also determine from the ensemble of arguments what read-
ing of the verb is intended. By this, we mean which of the possible scenarios the verb might
describe is actually being described in this - irticular case. For example, the sentences The boy
broke the window with the hammer generates quite a different mental scenario than The dog
broke the window or The window broke. Our model captures the differences between these

scenarios in two ways: one is simply in terms of the set of underlying roles and the assignment
of sentence constituents to these roles. We have already seen in our earlier discussion of break
that the model produced a different set of slots and assigned the preverbal noun phrase to a
different role in each of the sentences T'.e dog broke the window. he harnrner br,,ke the vase,
and The plate broke. The other way the model captures the differences between scenarios is in

terms of the pattern of activation of verb features in the Agent. Patient, and Instrument slots.
Thus in The boy hit the girl, we visuali,e physical contact between the boy and the Lirl: in the
case of The boy hit the girl with the rock, we visuali/e physical contact between the rock and
the Lirl. These and other related distinctions are captured (admtttedly. imperf'ectiyl in the
different feature patterns associated with the verb Frames. \s with the feature patterns for
nouns, the patterns that we used do not adequately encode the differential flexibility of
different aspects of the different scenarios. Nevertheless they capture the essence of' the
dif"ference, say, between one or the other kind of hitting.

The features of the scenario are captured in the pattern of' activation of the case role
units. To this point, we have been summing along columns of' units to determine the features
of the object assigned to a particular role by the model. To determine the 6C.atures of the

"-- i%•  " .-... .. ... ...... . ..-.-... -... -.... '•""" "". .
• -, ,.'-"v , .'i- ---". ,. -',. - ,. - .-"-'.. ,4- -: -.-." , -, .-_. . --- v ' . ..,. .. - . ..,.,-...- . - -,..-,.-. .- , .
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action or scenario assigned to the sentence, we need to look along the rows. Figures 3, 7, and
8 indicate that features in somewhat different patterns of rows are activated by the sentences
The boy broke the window with the hammer, The dog broke the plate, and The hammer broke the
vase. These are, indeed, the correct verb features in each one. Thus, we see that the model
has learned to successfully assign a different scenario, depending on the arguments supplied
along with the verb.

In general, the model did quite well selecting the correct scenario. For every unambigu-
ous test sentence, familiar or unfamiliar, the value on each scenario dimension that was most
active was the correct value.

Filling in Missing Arguments

The model does a very good job filling in plausible default values for missing arguments.
To demonstrate this, we tested the model on the sentence fragment The bov broke. The results
are shown in Figure 11. The model fills in, fairly strongly, a plausible but underspecified fra-
gile object -- something that is nonhuman, neuter, nonpointed, fragile, and has object-type fur-
niture (plate, vase, and window are all classified as furniture in tne model). Values on the size
(VOLUME) and shape (FORM) dimensions are very weakly specified 2

We see similar kinds of things happening with The girl ate, though in this case, the
model is actually taught to fill in food of unspecified form, so this performance is not surpris-
ing. Something slightly different happens with The man moved: The model is taught to treat
man as botP Agent and Patient in such sentences; and indeed, the pattern for man predom-
inates in the Patient slot. (Note that if an object is specified, as in The man moved the piano, it
is handled correctly.)

These additional examples make two points: First, that the model can be explicitly
trained to fill in implied arguments; and second, that the filling in of implied arguments is
clearly specific to the particular verb. What is filled in on the Patient slot is quite different for
each of these three examples.

12. While the model's response to The boy broke clearly illustrates default assignment, it differs from the way many
people appear to process this input; several people have commented to us that they read this fragment as a complete
sentence specifying that it was the boy that broke, even though this produces a somewhat anomalous reading. rhe
model's response to The boy broke is closer to the kind of thing most people get with a verb like hit, %khich does not
have an intransitive reaOing.

7 .
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FTure II. Summaries of the model's response to The boy broke. The .nrI are, and the mesan rnuesp..

Lex al .tnbguity Resolution

In beneral, the model does very well with ambiguous words. That is. it has lttle
dithiculty deterrmning which reading to assign to an ambiguous word based on its context of

occurrence -- as long as the context is itself e sufficint to disambiguate the meaning of the
word.

To demonstrate this point, we carried out a number of analyses of the model's rc.sponscs
to sentences containing the ambiguous nouns chicken dlive or cookedi and hat Il\x in r ba~c-
ball). We divided the sentences containing these ambiguous words into those that hid onlN
one case-frame representation derivable from the generators and those that could ha'.e been

generated in two different ways. An example of the former kind of sentence is lh'e Cicn t -.t'

the carrot. since only a live chicken could occur as the preverbal \P with ate. An c\aniplc of
the latter kind of sentence is The bat broke thre window, which could be zenerated eCither rom
Fhe anirnal broke the f'ragde_object or from The breaker brAke the frade_,i,,'t. (1'lsen the ct
of zenerators. the context specifies which reading is correct for the tirst kind Ot entCncC but
does not ;pecify' which reading is correct for the latter. Since our present interest i, to Nee hoA
well the model can do at usine context to resolve ambiguity, we focus here on the ormcr ".pe.

Our first analvsis simply compared the model's performance with thec ,entence, to ;s
performance with sentences containine no ambicuous words. Since a larLe nunier ot ,.
contribute to the number-of-bits-incorrect measure, we focused on a set kot ', oen niatchei
pairs of sentences that were generated from the same generators and were . elio cither both old

. ...- .-............ . ... . . . . . . .. . . . . . .
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or both new, but differed in that one contained an ambieuous word (e.g.. FPie v,,rnan ate !he
chicken with the carrot) and the other did not (The boy ate the carrot .vith the pasta). The aver-
age number of' features missed was 28.4 for the items containing ambiguous words and 29.1
for the control items. F(1,6) < I.

Another way to exaine the data is to examine the relative strengths of the features of
the two readings of an ambiguous word in the output summar' representation. Figure i2
indicates a typical case and one interesting exception to the general pattern. In the t\pical
case i The man ate the chicken with the fork), we see that the features of the cooked chicken
have been strongly activated in the Patient slot. and though there are some weak traces of the
features of" the live chicken. they are not stronger than the weak extraneous acti ation we
often see of incorrect features for unambiguous words. In the atpical case I le :A,,lf ate the
chicken), the pattern is really much closer to the cooked chicken than the live one that the
model was "supposed" to have retrieved. It is difficult to fault the model too much in this
case. however. Though it was never given sentences of the form I[he animal ae the fid. it
was given sentences of the form The animal ate, where the underlying case frame included
lmplied) food. Thus the model had considerable reason to treat the object of Fhe animal at'
as food. Though it had learned The lion ate chicken referred to a live chicken, it appears to
prefer to treat chicken in The wolf ate chicken more as cooked food than as a livinvc animal.
Some of the properties of the live chicken are weakly present -- ec.., its female sex and its
natural, animate object-type classification -- but the predominant pattern is that ol'fiod.

With this exception, the model has shown itself quite capable of handling sentences con-
taining ambiguous words as well as sentences containing only unambiguous words. hlis is. of
course, not really surprising in view of the fact that all the words in the sentence are used to
help constrain the features assigned to the fillers of every role in the case frame. When one
word does not provide the information to constrain the output, the model can exploit
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information contained in other words.

Structural Ambiguity

In this section, we briefly consider another type of ambiguity that sometimes arises even
when the words in the sentence are unambiguous. This is the structural ambiguity of sen-
tences such as The man hit the woman with the hammer. In such cases, hammer can either be
the Instrument or simply a Modifier of woman. This case-structure ambiguity parallels an
ambiguity in the syntactic structure of the sentence as well; if hammer is an Instrument, it is
dominated directly by the VP; whereas if it is a Modifier, it is dominated by the NP the win-
dow. Because hammer was included both in the list of possible possession-modifiers of human
objects and in the list of possible instruments of hitting (designated as possessions and hitters
in the sentence frames in Fable 2 and in the noun categories in Table 3). either of these read-
ings is equally possible. Thus, it is not so surprising that the model has considerable difficulty
with such sentences, generating a blend of the two readings.

A particularly interesting case of case-structure ambiguity occurs with the sentence The
bat broke the window. As already mentioned, the sentence is both lexicallv ambiguous and
ambiguous in case structure, and the structural ambiguity hinges on the lexical ambiguity. If
bat is a baseball bat then the case frame specifies an Instrument and a Patient, but if it is a
flying bat then the case frame specifies an Agent and a Patient.

Figure 13 illustrates the pattern of activation generated in this case. What the model
does, quite sensibly, is activate one kind of bat -- the flying bat -- on the Agent units and the
other -- the baseball bat -- on the Instrument units (see the figure caption for a detailed expla-
nation of the use of the black background in this figure).

People generally get only one reading of a sentence at a time. even when (as in this case)
the sentence is easy to interpret in either of two ways. In a later section of this chapter we
explain how cross-connections among the case role units and back-connections to sentence-
level units would tend to cause the model to choose a single interpretation, even in these
ambiguous cases.

Shades of Meaning

Another property of the model, related to its handling of ambiguity, is the fact that it
can shade the feature patterns it assigns, in ways that often seem quite appropriate. One
example of this tendency arises in the model's response to the sentence lh, hall br,,k tie tvase.
A summary of the pattern produced is shown in FLigure 14. The fbeature pattern on the Instru-
ment units matches the features of ball fairlv closely. [he value on each dimension that is
most strongly activated is the correct value, except on one dimension -- the hard soft dimlen-
sion. On this dimension, we can see that the model has gotten ball completely wrong -- it has
strongly activated hard. instead of sfi.
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In one sense, this is clearly an "error" on the model's part: all the balls that it learned
about were soft. not hard balls. But in another sense, it is a perfectly sensible response for the
model to make. All of the other instruments of breaking (called breakers in [able 3) were, in
fact, hard. The model picked up on this fact, and shaded its interpretation of the meaning of
the word ball as a result. As far as this model is concerned, balls that are used for breaking
are hard, not soft.

This kind of shading of meaning is just another manifestation of the process that fills in
missing arguments, chooses appropriate verb frames, and selects contextually appropriate
meanings of words. It is part and parcel of the mechanism that generally results in the activa-
tion of the nominally correct feature pattern. It is a mechanism that naturally blends together
what it learns into a representation that regularizes slot fillers, in the same way that the verb
learning model discussed in Chapter 18 regularizes verbs.

Other Creative Errors

The model made a number of other interesting "errors." Its response to The doll moved
was a particularly striking example. Recall that the training stimuli contained sentences from
the frames Fhe animal moved, The human moved, and Fhe object moved. In the first two cases.
the case frame contained the subject as both Agent and Patient, as in The animal moved itself.
In the third case, the case frame contained the subject only as Patient. ihe model had some
dilficultv with these constructions, but generally put inanimate subjects inte the Patient role
only (as in The desk moved), and animate subjects into both the Agent and Instrument role.
With The dol moved, however, the case-frame representation shows considerable activation in
the Agent slot. The pattern of activation there (Figure 15) seems to be pretty much that of a
small (though fragile and nonhuman) girl -- or perhaps it is simply an animate doll.

Generalization to Novel Wf'ords

We have already seen that the model can generalize quite well from particular sentences
that it has learned about to new ones that it has not seen before. It is, obviously, important -

to be able to generalize in this way, since we cannot expect the training set of sentences to
cover all possible word combinations in the language, even if they contain only a single clause.
Thus far, however, we have only considered generalization to sentences made up of familiar
words. What would happen, we wondered, if' e tested the model using new words that it hid
never seen before? To examine this Issue, we tested the model on the verb t,,uch. ;,uih
differs from lat in only one feature, namely, intensity: otherwise all of the same verb features
are appropriate to it. We assumed that the model alread% knew the meaning, of touch -- that
is, we assumed that the correct input microfCeaturcs were activated on presentation of a sen-
tence contain1ng it. We then took all of the test ,entences containing the word hit, replaced
hIt with t,,uch,'d, and tested the model on each of these sentences. ()Merall. pcrformance wa'
somewhat orse than \ith it. but the model was still able to assign arguments to the correct
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Figure ch State of the model after processing the sentence The oil 'v,'. Vhe unt, with the black back
fround in the igent slot indicate the units appropriate for the pattern corresponriding to an "animate doll'" s -\gent

of the agent-Verb-Se (eVS) reading of move. The units wth the black backgrouid i the Iauent ,lot indicate the
uits appropriate for either ananimate - (normal) toy doll as Patent or eithr the ' VS ,r Patient.Verb P\r i read
ing of" move.

underlying roles. In particular. it had no dincult. arsuin C-rnmate Subject \1 to the role
of Agent a nd the Object NP to the role of Patient. nor dtd it haxe an> problem assigning inan-
imate subjects to the role of Instrument, as illustrated tn Fi-gure lb.

[wo characteristics of the model's pertformance with tWis nos ci serb should be noted.
Ihe first is that it does not activate all the correct serb features: lhe serb features cdptured in
the case role representation are appropriate ft, ht rather thdn 1,,nb. [here are two reasons
for this. O)netis the redundancy of the representation of the serbs. lhe input representation -

We dre ulsin is an extremely rich and redundant representation for capt uring the enr ,niall

number of verbs that we have actuallk used, so the model learns to predict 1'eatures from other
t'eatures. In a much less redundant set oferbs. the model would 1e Forced to learn to rels on

r, ]
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Iigure Ib. Sunmmary A the pattern of act.1 atin produced by the . odel i response to 'he hatchet :,,U,,hd

:he and .'he girl nuched the boy.

just the right feCatures of' the senitce-level pattern to predict the I'eatures of- the case role E
representation correctly. 'The second reason is that the deviant f-eature on tile word 11,,uch does -
not Call inside a subspace delineated by a set of' related exemplars that behavec in similar ways.
What we are seeing here, essentially. is assmilatin to a single familar Nerb that is near the

novel verb in Featur( space. When a no~cl word is presented that more nearly falls inside tile.
,uhspace delineated by a set oL related exemplars the model is better able to correctly

represent all the features of' the novel word in the case role representation. To show tis. we |
defined a new fragile object. a lamp, that was nonhuman, hard, neuter. .ed4n-;/ed, one-
imensional, not pointed. fragile, and furniture Tis set of' features matches at least one of'

the breakable obects on ev ern dimension. out matches none of' them on ll of tihe dimensions.
We then tested the sodel hv takingc all of the 'amiliar test sentences containhng ase olt, e

ramiar breakable obects T ecnddw, ase and plae and then testing the model od these den-
tences with the oub sp dinteae b f th fmillar breakable obct. In man cases, as .
the first eamp e ho en s sigure , the model activated all the features correctlhat a s
the correct ieatur spOr acemp on each dinension was morest ed that mornarly fan ans other.

I tc model waN nio,, ulncrable to error on tile VO[.LAI{ arid I:()RNI dtMICTStons. ,s In tile
second ceample ahown, where t dff red From two of the three amlear e'ragble objects l Ch
crse. ai etample indicates then that the desirable tendency of the model to shade thie
mcanis of the words it e couiters to fit the typical features it apcts c certain conte\ts
need not lead to severe dstortions of novel words as long as ther feamure Patterns i mson

the space spanned b% a set o' ;imilar words that are treated by tile model in a cotnsistclit \ ,a\

.5:a~t (;)~td~tExten.sions

-lthe tsodel does mdn things well, but it s reali st the first step toward a PnP model
Of Sentence processing In the aencral ohscussion we will consider some of the more a in
ssues thact featurc the attempt to extend I model ofr this tpe urther Hre. we wIll t

The ode wasmo' ulerabe t errr o th V~l t t Fand A) . \ldimnsins, s i.th
secod eampe shwnwhee i difere frm to ofthethre failir fagie obect ineac
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Figure~~ I- Summar A h epneo h ndft h onn;rk h an r-'e.arp

can ur no .In myo the ntvrespons of the model, to he ionfluce o oe argmeo an oth ~v5';Uer an.

mntio esental d stgetr w i eosth t sh nluneoul bhe firlo thato impement. We hilaute

inoteryeipeened thesc chanes, so urs diFuson isxamewha seeipelatiresrie.n

Oewente Istrghtnorad se Ojextenasins tola the mde woul nvle adi l crss-
conectins amog the caslte frole uis. Theioss-connsecon s oulda ao aifreuent cro-

canhow. te p resen vers (il ioo the m odelh the inflencofooe ardBl htt emn t On anoter cani
onuly ssentially adThepreswith teinfuence modtel verbd o thal reuethise wills ut-
melv pntrveT~ insum~cent wensbelive, because differe es cis' withde theraially diCrnt
inerdeptedtees among. thetir arumnts. coneos eamle. us amposes comenc restrictons
beteien the intumt andtethe rolec uis 'in mells tht conntion h o.!f'c nd BiarLl s
thecma with tbhearactlertic the firt ietl amig orhk sn i s de inot hat re dnitfferentifom
thoe psed byl huBitt, hoheer man wroithte jutlsch a un il i te enoith. teni ivorsee
teoe.ull atrcousne pesntvrion ofes untheme would o atur ai cabpture fi ths oind ofr

erbact tebsentence leeiandc i CO isC1CC only CT conne tn tilrs unit at he~ setece Cee ta

detrmineth nput onth ase role units.le [his means id tha cnuncnso M ou chatr

as well. They would allow competition amone_ alternati'. e interpretations of' the soeword it

the case-frame level, so that the stroneer o~f two competing interretations of he awc ,k ord

Could etfecti~ cly suppress the weaker.
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A second straightforward extension would be the addition of back-connections from the
case role units to the sentence-structure units. This, too, could have several beneficial effects
on the performance of the model. In an extended version of the model, with cross-connections
and back-connections, the computation performed by the present version of the model would
be just the first step in an iterative settling process. This settling process could be used to fill in
the features of one reading or another of an ambiguous word at the sentence level, based on
the emerging pattern at the case role level. Once filled in, these features could then add to the
support for the "dominant" reading over other, initially partially activated readings -- the
whole network would, in effect, drive itself into a stable "corner" that would tend to represent
a coherent interpretation at both the sentence and the case role level. Kawamoto (1985) has
observed just such effects in a simulation of word disambiguation based on the brain-state-in-
a-box model of J. A. Anderson, Silverstein, Ritz, and Jones (1977). (Cottrell, 1985. and Waltz
& Pollack, 1985, have also observed such effects in their more localist sentence-processing
models.)

Back connections would also allow case role activations to actually speci"f Lhe semantic
features of novel or unfarmliar words occurring in constraining contexts. Consider. for exam-
pie, the sentence, The girl broke the shrafe with the feather. The context provides a consider-
able amount of constraint on the properties of shrafe. The existing version of the model is
able to fill in a plausible interpretation at the case level, but with feedback it would be able to
pass this information back to the sentence level.

Another way of passing information back to the surface-structure level would be to use
the back-propagation learning algorithm. The use of back propagation to train the sentence-
structure units could allow the right features to be constructed at the surface level with only a

phonological representation of the words as the prcdefined input. Back propagation might
also allow us to cut down on the rather excessive numbers of units currently used in the
surface-structure level. Right now there are far more SS units than arc strictly necessary to do
the work that the model is doing. While many units could be eliminated in a straightforvard
way (e.g., many of' the sentence units could be eliminated because they stand for unlikely con-
junctions of features across dimensions, such as hruman and to,,[), many more are Simply redun-
dant ways of encoding the same information and so could be consolidated into fewer units. On
the other hand, for a larger vocabulary, some conjunctive units will turn out to be necessary.
and pair-wise conjunctive units ultimatel will probably not suilice. Indeed, we feel quite sure
that no predefined coding scheme of the kind we have used could provide a suflicient basis for
learning all the sentences in any real language without bcing immensely wasteful, so it will
become crucial to train the sentence and case role units to represent just the needed conjunc-

tions of features.
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Distributed Representation of Roles

We mention a final "straightforward" extension of the model under a separate heading
because it is both more speculative and perhaps somewhat more difficult to understand than
the previous suggestions. This is the idea of using a distributed representation of the roles.
The idea was first suggested by Hinton (1981a), and is currently under exploration by Derthick
and Hinton at Carnegie-Mellon University. The essence of the idea is to think of roles not as
strictly separate, monolithic objects, but as sets of role descriptors. Thus the role of Agent has
certain properties: It specifies an active participant in the scenario, one that may be voli-
tional; it specifies the instigator of the action. The role of Patient, on the other hand, specifies
a passive participant, one whose volitional involvement is (pretty much) irrelevant, but who is
the one that experiences the effects of the action.

Various problems arise with treating these roles as unitary objects. One is that some but
not all of the Patient properties generally hold for the role nominally identified as Patient.
Similarly, some but not all of the Agent properties generally hold for the role nominally
identified as Agent. In certain cases, as with sentences like The boy moved, enough of these
properties hold that wc were led to assign the boy to both roles at once.

One suggestion that has often been made is to proliferate separate roles to deal
separately with each of the slight variants of each of the traditional cases. This leads, of

course, to a proliferation of roles that is ungainly, unwieldy, and inelegant, and that detracts
considerably from the utility of the idea of roles as useful descriptive constructs.

lere, distributed representation can provide an elegant solution, just as it has in other
instances where there appears to be a temptation to proliferate individualized. unitary
representational constructs (see Chapter 17). If each role is represented by a conjunction of
role properties, then far more distinct roles can be represented on the same set of role units.
Furthermore, what the Agent roles of two verbs have in common is captured b\ the overlap of
the role features in the representations of their roles, and how they differ is captured by their

. differences. The notion of a role that represents a combined Agent Patient as in I/Ie b"Y
moved is no longer a special case, and we get out of assigning the same argument to two
different slots.

So far, the vision outstrips the implementation of this idea. but we will sketch briell\ one
very rudimentary instantiation of it, in what really amounts to a rather slight modification of'
the model we have described above. Currently, our case role units stand for conjunctions of a
role, a feature of the verb, and a feature of the filler of the role. The suggestion, quite simply.
is to replace these units with units that stand for a feature of a role, a fIeature of the %crh. and
a feature of the filler of the role. The first NP in The by!,roke the wind,,w with the happwr
will produce a pattern of activation over one set of these triples (corresponding pretty much to
the canonical features of agenthood), while the boy in lhe /,0y moved would activate some
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units from other role feature sets, as well as many of the typical agent feature units.

Again, we stress that we do not vet have much experience using this kind of distributed
representations of roles. However, Derthick and llinton (personal communication, 1985) are
exploring these ideas in the context of a PDP implementation of the representation language
KL-TWO (Brachman & Schmolze, 1985; Moser, 1983). They have already shown that at least
one version of the idea can be made to work and that the coarse coding of roles can be used
to allow inheritance of constraints on role fillers.

DISCUSSION

Now that we have examined the model in some detail and considered some possible
extensions of it, we turn to more general considerations. We consider thi'e issues. First, we
examnne the basic principles of operation of the model and mention briefly why they are
important and useful principles for a sentence-processing model to embody. Second, we con-
sider some of the implications of the model for thinking about language and the representation
of language. Third, we address the limitations of the present model. This part of the discus-
sion focuses on a key question concerning the feasibility of our approach. namely, the require-
ment that any plausible model of language processing must be able to handle sentences con-
taining embedded clauses.

Basic Features of the Model

We emphasize before we begin that the basic features of the present model are shared
with a number of other distributed models, especially those of Ilinton (1981a) and those
described in Chapters 3, 14, 17, and 18 of this book. The two most important properties of
the model are its ability to exploit the constraints imposed by all the arguments in a sentence
simultaneously and its ability to represent shades of meaning. These aspects are basic, we
believe, to any attempt to capture the flexibility and context-sensitivity of comprehension.

The first of these properties is, perhaps, just as easily capturable using local rather than
distributed connectionist networks. These local connectionist models capture this property
much more effectively than they have been captured in nonconnectionist mechanisms (e.g.,
Small's, 1980, word expert parser; cf. Cottrell & Small, 1983). Such networks have been
applied to sentence processing, particularly to the problems of ambiguity resolution and role
assignment (Cottrell, 1985; Waltz & Pollack, 1985). Both models use single units to stand for
alternative meanings of words or as "binders" to tie words to alternative roles, and use mutual
activation and inhibition to select between alternative meanings and alternative role assign-
ments.

The present model exhibits many of these same properties, but uses distributed represen-
tations rather than local ones. What the distributed representations have that local represen-
tations lack is the natural ability to represent a huge palette of shades of meaning. With
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distributed representations, it is quite natural to represent a blend of familiar concepts or a
shaded version of a familiar concept that fits a scenario (Waltz & Pollack, 1985, do this with
their context microfeatures). Perhaps this is the paramount reason why the distributed
approach appeals to us. To be sure, it is possible to represent different shades of meaning in a
localist network. One can, for example, have different units for each significantly different
variation of the meaning of a word. A problem arises, though, in specifying the meaning of

significantly different." We will probably all agree that there are different readings of the
word bat in the sentences The bat hit the ball and The bat flew round the cave. But what about

the word chicken in the sentences The woman ate the chicken and The wolf ate the chicken? Or
what about the word ball in The baby kicked the ball and The ball broke the window? There is
no doubt that we think of different balls in these cases; but do we really want to have a
separate unit in memory for the soft, squishy, rubber ball the baby kicks and the small, hard
ball that can break a window?

With distributed representations, we do not have to choose. Different readings of the

same word are just different patterns of activation; really different readings, ones that are
totally unrelated, such as the two readings of bat simply have very little in common. Readings
that are nearly identical with just a shading of a difference are simply represented by nearly
identical patterns of activation.

These properties of distributed representations are extremely general, of course, and they
have come up before, particularly in the chapter on schemata (Chapter 14). We also just
invoked them in suggesting that we might be able to use distributed representations instead of
some fixed set of case roles. In both of these other cases, as in the case of distributed
representation of word senses, the use of distributed representation allows for all shades and
degrees of similarity and difference in two representations to be captured in a totally seamless
way.

A final basic feature of the model is the gradualness of acquisition it exhibits. We have
not stressed the time course of acquisition, but it was, of course, a crucial property of the verb
learning model, described in Chapter 18, and it is quite evident that acquisition is gradual from
Figure 4. As with the verb learning model, our model also seems to pick up on the strongest
regularities first. This is seen most easily in Figures 5 and 6 by comparing NVN sentences
from the hi: and broke generators. Those with animate preverbal NPs. which are Agents. are
learned more quickly than those with inanimate preverbal NPs, which are Instruments. This is
because a far greater number of constructions have animate, Agent subjects than have inani-

mate, Instrument subjects.

These three basic properties -- exploitation of multiple, simultaneous constraints, the
ability to represent continuous gradations in meaning, and the ability to learn gradually,
without formulating explicit rules, picking up first on the major regularities, are hallmarks of

parallel distributed models, and they are no less applicable to comprehension of' language than

. ... .*
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they are to any other aspect of cognitive processes.

Do Words Have Literal Meanings?

There is one further aspect of the distributed approach to representation of meaning that
should be mentioned briefly. This is the stand our model takes on the issue of whether words
have literal meanings. It is normal and natural to think of words as having literal meanings,
but it is very difficult to say what these meanings really are. For, as we have noted
throughout this chapter, the apparent meanings of words are infinitely malleable and very
difficult to pin down. An alternative view is that words are clues to scenarios. This view,
which has been proposed by Rumelhart (1979) among others, never made very much impres-
sion on us until we began to study the present model. However, in exploring the model, we
have found that it embodies Rumelhart's idea exactly. A sentence assembles some words in a
particular order, and each provides a set of clues that constrains the characteristics of the
scenario, each in its own way. The verb, in and of itself, may specify a range of related
scenarios and certain constraints on the players. The nouns further restrict'the scenario and
further constrain the players. But the words themselves are no longer present in the scenario,
nor is there necessarily anything in the scenario that corresponds to the literal meaning of any
of the words. Thus in the case of The doll moved, the (partially activated) Agent is not a copy
of the standard doll pattern, but a pattern appropriate for a doll that can move under its own
steam.

The crucial point, here, is that all the words work together to provide clues to the case
frer-e representation of the sentence, and none of the words uniquely or completely determine
the representation that is assigned to any of the constituents of the underlying scenario. Cer-
tainly, the word hammer most strongly constrains the filler of the Instrument role in The boy
broke the vase with the hammer, but the other words contribute to the specification of the filler
of this role, and hammer contributes to the specification of the fillers of the other roles. Com-
pare The prisoner struck the rock with the hammer and The boy broke the vase with the feather:
The former suggests a heavier hammer; the latter suggests an extremely fragile vase (if we give
an instrumental reading to the with-NP).

Toward a More Complete Model of Sentence Processing

As we have already made clear, the model that we have described in this chapter is far
from a complete model of the psychological processes involved in sentence processing. It does
not deal with the fact that sentence processing is an on-line process, a process that unfolds in
real time as each word is heard. It does not deal with the integration of processed sentences
into larger contextual frameworks. It does not handle anaphora and other referential
phenomena, or tense, aspect, or number. No attempt is made to deal with quantification or
scoping issues. The model even lacks a way of distinguishing ditflrent tokens with identical
featural descriptions. Thus it does not explicitly designate separate dogs in dog eat dog and
only one dog in Tze dog chased himself Finally, the model completely ignores the

i "': .:...... .
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complexities of syntax. For the present model, a sentence can come in only one rigidly struc-
tured form, and no embedded clauses, cleft sentences, or passive constructions are allowed.

Clearly, we have much work to do before we can claim to have a model that is in any
sense complete or adequate. The question is, can it be done at all? Is there any fundamental
limitation in the PDP approach that will prevent the successful development of a full-scale
model of language processing that preserves the positive aspects of the distributed approach?

Obviously, the proof is in the pudding. But we think the enterprise can succeed. Rather
than discuss all of the issues raised above, we will discuss one that seems quite central,
namely, the application of PDP models to the processing of sentences with embedded clauses.
We consider several different ways that PDP models could be applied to the processing of such

sentences.

Interfacing PDP mechanisms with conventional parsers. We start with what might
be the simplcst view, or at any rate the most conventional: the idea that a model such as ours
might be interfaced with a conventional parser. For example, we might imagine that a parser
similar to Marcus's PARSIFAL (1980) might pass off the arguments of completed (or possibly
even incomplete) clauses to a mechanism such as the one we have proposed for case role
assignment and PP attachment. In this way, the "role-assignment module" could be used
with any given sentoid and could be called repeatedly during the processing of a sentence con-
taining embedded clauses.

Interfacing our model with a conventional parser would perhaps provide a way of com-
bining the best of both conventional symbol processing and parallel distributed processing.
We are not, however, particularly inclined to follow this route ourselves. For it appears that it
will be possible to implement the parser itself as a PDP mechanism. As we shall see, there are
at least three ways this might be done. One involves implementing a true recursive automaton
in a PDP network. We describe this method first, even though we suspect that the human
parser is not in fact such a machine. After describing the mechanism, we will explain our
objections to this view of the human sentence-processing mechanism. This will lead us to sug-
gest two other mechanisms. One relies on the connection information distribution mechanism
described in Chapter 16 to program a parallel net to process sentences of indefinite length and
embeddedness; the other operates iteratively rather than recursively. It is more computation-
ally limited in some respects than the other mechanisms, but the limitations appear to conform
to those of the human parser, as we shall see.

A PDP model that does recursion. It turns out that it is not difficult to construct a
- parallel network that does true recursive processing. Ilinton (personal communication)

worked out the scheme we will describe here and implemented a rudimentary version of it in
- 1973. While such a mechanism has not been applied directly to parsing, the fact that recursive

processing is possible suggests that there is no reason, in principle, why it should not provide a

t2.
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sufficient basis for implementing some kind of parser.

The mechanism consists of a large network of units. Patterns of activation on these units
are distributed representations of a particular state in a processing sequence. Processing
occurs through the succession of states. The units are divided up into subnets that represent
particular parts of the state. One important subnet is a set of units that provides a distributed
pattern corresponding to a stack-level counter.

The connections in the network are set up so that successive states of a routine are asso-
ciated with their predecessors. Thus, when one state is in place, it causes another to follow it.
States may also be used to drive actions, such as output of a line segment, say, if the automa-
ton is a mechanism for recursivelv drawing figures, as linton's was. Processing, then,
amounts to carrying out a sequence of states, emitting actions (and possibly reading input)
along the way.

Calling subroutines in such a mechanism is not particularly difficult, since all that is
required is to associate a particular itate (the calling state) with the start state of some rou-
tine. Passing parameters to the called routine is likewise not particularly difficult; in the sim-
plest case they can be parts of the calling state that are carried along when the routine is
called.

To implement recursion in such a network, all that is required is a way to reinstate the
calling state when a routine is done. Io do this, the mechanism associates the state of the
stack-level units with the state that is in place over the rest of the units, using an associative

learning rule to adjust connection strengths while processing is taking place. These associa-

tions are implemented by rapidly changing a short-term component of the weights whose
long-term values implement the associations that allow the model to cycle through a sequence
of states. The temporary associations stored in these short-term weights are not strong
enough to overrule the long-term weights. but they are sufficiently strong to determine the
next state of the network when the long-term weights leave several possibilities. So, at the end
of a routine at stack level A%, the network associatively reinstates stack level N - I, with the
rest of the state cleared. This associative reinstatement of the previous stack-level state would
be based on long-term, relatively permanent associations between states corresponding to
adjacent depths in the stack. This reinstated stack-level state, which was associated in the
short-term weights with the calling state just before the subroutine call occurred, would then
simply use this short-term association to reinstate the pattern that existed before the call. (A
"done" bit would have to be set to keep the process from doing the call again at this point.)

There is no apparent a priori limit to the number of embedded calls that could be carried
out bv such a network, though for any fixed siue of the stack-level subnet, there will be a
corresponding maximum number of associations that can be learned without error. Of course,
similar limitations also occur with all other stack machines; the stack is always of finite depth.
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There would also likely be interference of previous calling states when returning from any par-
ticular level, unless the learning were carefully tuned so that earlier associations with a particu-
lar stack level were almost completely wiped out or decayed by the time a new one must be
used. Care would also be necessary to avoid crosstalk between stack-level representations.
However, these problems can be overcome by using enough units so that very different states
are used to represent each level of the stack.

Drawbacks of true recursion. The scheme described in the previous section has several
fairly nice properties and deserves considerably more exploration than it or some obvious vari-
ants have received to date. However, it does have one drawback from our point of view -- one
that it shares with other, more conventional implementations of truly recursive automata. The
drawback is that the calling state is not present and active during the subroutine call; it is

. effectively inaccessible until it is reinstated after the return.

This property of truly recursive schemes limits their ability to simultaneously consider
binding a prepositional phrase at each of two levels of embedding. Consider the sentences:

(14) The boy put the cake the woman made in the kitchen.
(15) The boy saw the cake the woman made in the kitchen.

Our preferred reading of the first of these two sentences has the boy putting the cake in the
kitchen, rather than the woman preparing it there; while in the second case, the preferred
interpretation appears to be that the woman made the cake in the kitchen, and the boy saw it
at some unspecified location. Since the material is the same from the beginning of the embed-
ding in both cases, it appears that the demand the matrix clause material (The boy put the cake

.) makes for a locative argument influences the decision about whether in the kitchen should
be bound into the subordinate clause. While it may be possible to arrive at these two different
readings in a conventional parser by backtracking or by passing aspects of the calling state
along when the subroutine is called, it would seem to be more natural to suppose that the
matrix clause is actively seeking its missing locative argument as the embedded material is
being processed, and so is prepared to steal in the kitchen from the verb in the embedded
clause. Thus, it appears that a mechanism capable of processing at different levels of embed-
ding at the same time is needed.

A fixed-length sentence processor. A connectionist parser that can, in principle, handle
this kind of competition among alternative attachment decisions at different levels of embed-
ding has recently been developed and implemented by Fantv (1985). lle describes a mechan-
ism that effectively parses a sentence at many levels at the same time. The parser consists of a
fixed network of units. Some of the units represent the terminal and nonterminal symbols of
the grammar; other units, called match units, represent the different possible expansions of
each nonterminal. The symbol units are easily represented in a table in which the columns
represent starting positions in the input string and the rows represent lengths. There is a unit

. . 7 -
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for each termnal symbol in each position of the bottom row, and there is a unit for each non-
terrrunal symbol at every position in the table; that is, there is a copy of each nonterrninal unit
for every possible portion of the input that it could cover. For each of these there is a set of
binder units, one for each possible expansion of each nonterminal unit.

A simple version of the table, for the indicated three-rule grammar, is shown in Figure
18. Only a subset of the units -- the ones that would become active in the parse of aabbh --

are shown.

The parser can only process strings up to a predefined maximal length. Essentially, it
processes the entire sentence in one two-pass processing sweep. In the first, bottom-up pass.
all possible constituents are identified, and in the second, top-down pass, the constituents that
fit together with the top S and the subconstituents of the top S are reinforced. These active
units represent the parse tree.

A very nice feature of Fanty's parse is that it takes into account all levels of the parse
tree simultaneously. This allows it to find a globally satisfactory parse in one pair of sweeps.
elinunating possible constituents that do not fit together with others to make a globally
acceptable structure. With some modifications (different degrees of strength for different rules:
continuous, interactive processing as opposed to a single pair of sweeps), it would probably' be
possible to implement a mechanism that could choose the "better" of two alternative accept-
able parses, as people seem to do with many ambiguous sentences. The parser of Selman and
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Figure IS. Parsing table used in Fantv's multilevel parser. Only the units icu' e in the correct p,|rse Il the
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I lirst (1985: Selman, 1985), which is similar to the Fanty parser in structure but uses simulated
annealing, appears to have just the right characteristics in this regard.

I lowever, this kind of parser does have some drawbacks. Most importantly, it is limited
to sentences of a prespecified length. To expand it, one needs not only to add more units, one
needs to program these units with the connections that allow them to do the jobs they are
necdcd or potentially needed to do. Second, the size does grow rather quickly with the allow-
able length (see Ianty, 1985, for details).

Fantv's model is, in fact, somewhat reminiscent of the TRACE model of speech percep-
tion (Chapter 15) in its reduplication of dedicated units and connections. As with TRACE, it
may be possible to use connection information distribution (Chapter 16) to program the
necessary connections in the course of processing from a single, central network containing the
system's long-term knowledge of the rules of English. Indeed, Fanty (1985) has explored an
off-line variant of the connection information distribution scheme; his version learns new pro-
ductions locally, and sends the results to a central network which then distributes the results
to the rest of the net, off-line. If the programming of the connections could be made to work
on-line in the course of processing, as with the programmable blackboard model of reading,
we would have a mechanism that still needs large numbers of units and connections, but cru-
ciall,, these would be uncommitted units and programmable connections. The computational
capability of the machine would be expandable, simply by increasing the size of the pro-
grammable network.

Mvths about the limitations of PDP models. We hope that these last two sections
will help to dispel some widely held beliefs about computation and PDP models. We will
briefly consider two variants of these beliefs. The first, quite simply, is that PDP models can-
not do recursion. Ifinton's recursive processor needs considerably more development before
we will have a working simulation that proves that this belief is wrong, but it seems clear
enough that a recursive PDP processor will be available fairly soon. In fact, it is likely that a
slightly different approach will be explored more fully first: Touretzky and I linton (1985) have
recently developed a PDP implementation of a production system that can do rudimentary
variable binding, and at present it appears that they may be able to extend it to perform recur-
sive computations.

The second belief seems to follow from the first: It is that II)lP models are inherently
incapable of processing a full range of sentences. We say it only seems to follow because it
depends upon accepting the assumption that in order to process sentences it is necessary to be
able to do recursion. Most people who have thought computationally about sentence process-
ing are familiar with sentence-processing mechanisms that are in fact recursive, such as the
ATN (Woods, 1970) or the Marcus parser. Since sentences are recursinelv defined structures.
the (implicit) argument goes, the mechanisms for parsing them must themselves operate recur-

* sively.
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l:anty's I9S5) parser, or an extension of it incorporating connection information distri-
bution, begins to suggest that this may not be so. In a programmable version of Fantv's
parser, we would have captured the essential property of a recursive automaton -- that the
same procedural knowledge be applicable at any point in a parse tree. But we would have
captured it in a very exciting new way, a way that would free the mechanism from the serial
processing constraint that prevents conventional recursive mechanisms from being able to
exploit constraints from many levels at the same time. Connection information distribution

may actually permit us to reap the benefits of simultaneous mutual constraints while at the
same time enjoying the benefits of' being able to apply the same bit of knowledge at manyv

points in processing the same sentence.

[here are a couple of caveats, however. One is that connection information distribution
is very expensive computationally; a considerable number of units and connections are

required to handle the input to and output from the central knowledge structures (see Chapter

12 for further discussion), and the resource demands made by even a fixed version of Fantv's
parser are quite high already. There may turn out to be ways of reducine the resource
demands made by the Fanty parser. In the meantime, it is worth asking whether some other

* approach might not succeed nearly as well with fewer resources.

Context-sensitive coding, iteration, and center emnbedding. There is one more belief
about sentences, this one even more deeply ingrained than the last, that we have tacitly
accepted up to this point. This is the belief that sentences are indeed recursivelv defined struc-
tures. Clearly, sentences are recursivelv definable, but there is one proviso: Only one level of'
center embedding is allowed. It may be controversial whether the "true" competence gram-
mar of L|nglish accepts multiple center-embeddcd sentences, but people cannot parse such sen-
tcnces without the use of very special strategies, and do not even judge them to be acceptable
(G. A. Miller, 1902). Consider, for example, the "sentence":

(16) The man who the girl who the dog chased liked laughed.

The unparsability of sentences such as (16) has usually been explained by an appeal to adjunct

assumptions about performance limitations (e.g.. working-memory limitations), but it may be.
instead, that they are unparsable because the parser, by the general nature of its design, is sin-
ply incapable of processing such sentences!

It should be noted that parsers like the ATN and the Marcus parser are most ccrtainlx
not intrinsically incapable of processing such sentences. Indeed, such parsers are especially
well suited [or handling an indefinite number of center embeddings. Such mechanisms are

13. 1 his argument has heen made pre% ious,, h\,, a iumer of other aithors,. including Reiih I 'P,9). In lact, Reich

proposed an iteraive ;ipproadi to senience processing thul is similar, in "oMe respects, to tihe one %%ce con'ider here.
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clearly necessary for processing such things as Lisp expressions, such as this one taken from a
program (actually, itself a parser) written by Jeff Sokolov:

((and (eq (car (explode arg)) ': )
(eq (car (reverse (explode arg))) '/ ))

(implode (reverse (cdr (reverse (cdr (explode arg)))))))

But sentences in natural language are simply not structured in this way. Perhaps, then, the
search for a model of natural language processing has gone down the garden path, chasing a
recursive white rabbit.

One approach to sentence processing holds that we should ask much less of a syntactic
parser and leave most of the work of sentence processing to a more conceptual level of pro-
cessing. This position is most strongly associated with Schank (1973), and Charniak (19S31 is
among the recent proponents of this view.

Let us assume that the job of the parser is to spit out phrases encoded in a form that
captures their local context, in a way that is similar to the way the verb learning model,
described in Chapter 18, in a form that captures their local context'- Such a representation
may prove sufficient to allow us to reconstruct the correct bindings of noun phrases to verbs
and prepositional phrases to nearby nouns and verbs. In fact, we suspect that this kind of
local context-sensitive encoding can capture the attachments of NPs to the right verbs in
"tail-recursive" sentences like

(17) This is the farmer that kept the cock that waked the priest that married the man that
milked the cow that tossed the dog that worried the cat that killed the rat that ate the
malt that lay in the house that Jack built. 5

locally context-sensitive coding wili begin to break down, however, when there is center
embedding -- specifically, more than one level of center embedding. Local context can be used
to signal both the beginning and the end of an embedding, but cannot be used to specil
which beginning of an embedding the material just after the end of an embedding should be
bound to. Thus if we read to the last word of

14. For this to work it will be necessary to code units, not in terms of the adjacent words, but in terms ol neighbor-
ing constituents more abstractly defined. thus, in 'he girl in the hat saw the mouse on the rloor, we will want to en-
code the complex NP the girl in the hat as adjacent to the verb saw. Thus, local context will hake to be defined, as
it is in Marcus ( 190). in terms of constituents, not merely in terms of words. Getting this to work will be one of the
major challenges facing this approach.

""I1. Adapted from L. Johnson, E R. Sickels. & I. C. Sayers (Eds.), Antholoy of (hdlren' ltrature (4th ed., p.
- I 6), 1970. Boston: Iloughton-\lilllin.
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(18) The man who the girl who the dog chased laughed

we may not know whether to bind laughed (just after the end of the embedding) to the man
(NP before an embedding) or to the girl (a different NP before an embedding). If we bind it to
the man, we may experience a false sense of closure -- this sentence is ungrammatical because
it has only two verbs for three clauses.

These suggestions lead us to the following conjecture: It may be possible to build a PDP
language-processing mechanism that works iteratively along a sentence, building constituents
represented by distributed patterns conjunctively encoded with their local context of
occurrence. The mechanism would need a way of unifying constituents on two sides of an
intervening embedding. Exactly how this would be done remains to be established, but as
long as it is done in terms of a mechanism sensitive only to the local context of the consti-
tuents before and after the embedding, it may succeed where there is a single embedding but
fail in multiply embedded sentences where there are two suspended, incomplete constituents
that the mechanism must choose between completing.

We hope it is clear that these ideas are speculative and that they are but pointers to
directions for further research. Indeed, all three of the directions we have described in this see-
tion are only just beginning to be explored systematically, and it is unclear which of them will
prove most attractive on closer scrutiny. We mention them because they suggest that ways of
overcoming some of the apparent limitations of PDP mechanisms may not be very far beyond
our present grasp, and that it may soon be possible to retain the benefits of parallel distributed
processing in mechanisms that can cope with the structural complexity and semantic nuance
of natural language.

i:' .. . . . .. . .- . . . . . . . . . . . . - . . - .. .. ... . . . . .. :
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